cos(nx)

cos(2x) = –1+2cos2(x)
cos(3x) = –3cos(x)+4cos3(x)
cos(4x) = 1–8cos2(x)+8cos4(x)
cos(5x) = 5cos(x)–20cos3(x)+16cos5(x)
cos(6x) = –1+18cos2(x)–48cos4(x)+32cos6(x)
cos(7x) = –7cos(x)+56cos3(x)–112cos5(x)+64cos7(x)
cos(8x) = 1–32cos2(x)+160cos4(x)–256cos6(x)+128cos8(x)
cos(9x) = 9cos(x)–120cos3(x)+432cos5(x)–576cos7(x)+256cos9(x)
cos(10x) = –1+50cos2(x)–400cos4(x)+1120cos6(x)–1280cos8(x)+512cos10(x)

 

Lascia un commento

Il tuo indirizzo email non sarà pubblicato.

Time limit is exhausted. Please reload CAPTCHA.